Advanced Emission Controls for Natural Gas Vehicles

Dr. Joseph Kubsh

DOE Natural Gas Vehicle Technology Forum

Manufacturers of Emission Controls Association

(www.meca.org)

January 2003

Outline

- Stoichiometric Engines
 - Light, Medium, and Heavy-Duty NG Vehicles
- Lean Burn Heavy-Duty NG Engines
- Conclusions

Future Emission Standards Continue March to Near-Zero Emission Categories for Light-Duty Vehicles

> Ultra-low Gasoline Sulfur Levels Facilitate Near-Zero Emission Targets: CA: 15 ppm S max; U.S.: 30 ppm S max; EU: moving toward 10 ppm S max.

First SULEVs/PZEVs Introduced in 2001 with More to Come

- SULEVs sold in California
 - Honda Accord SULEV (2.3 liter I4)
 - Toyota Prius SULEV (1.5 liter I4, 33 kW electric drive)
 - Nissan Sentra-CA SULEV (1.8 liter I4)
 - first PZEV (meets zero evap. requirements and is certified for 150K mile durability)
 - Honda CNG Civic SULEV
 - Seven different OEMs offer gasoline PZEVs for MY 2003
 - BMW, VW, Volvo, Ford, Nissan, Honda, Toyota
 - 4, 5, & 6 cylinder engine

Near-Zero Emission Systems Include Advanced Engine Designs and Emission Controls

- Advanced Emission Control Technologies include:
 - Advanced thermally stable, oxygen storage materials
 - In many cases, layered TWC coating architectures
 - In some cases, HC adsorber functions
 - High cell density substrates
 - Fast response oxygen sensors
 - Secondary air systems
 - Thermal management hardware including air-gap pipes & low heat capacity manifolds

- Advanced Engine Technologies include:
 - Improved fuel injectors
 - Variable valve technology
 - Lean start strategy with spark retard for fast catalyst heat-up
 - Electrically controlled EGR valve
 - Advanced control algorithms for precise A/F control

Advanced Substrates Provide Significant Impacts on HC Emissions and PGM Usage

Similar Advantages on NOx Emissions with Advanced Substrates

Advanced Stoichiometric Emission Control Technologies are Also Effective on Medium-Duty CNG Engines (6.0 Liter V8)

Test Description	THC g/bhp-hr	CH4 g/bhp-hr	NMHC g/bhp-hr	CO g/bhp-hr	NOx g/bhp-hr	NOx+NMHC g/bhp-hr	
Production Converters 125 hrs CNG hot runs average	0.36	0.345	0.015	1.04	0.202	0.217	
Advanced Catalysts 125 hrs CNG hot runs average	0.101	0.095	0.006	0.931	0.08	0.086	
Emissions Reductions	72 %	72%	60%	11%	61%	61%	

 Substantial reductions in NOx, THC, and methane emissions with baseline gasoline TWC precious metal loadings and high cell density substrates

Source: NREL/SCAQMD Next Generation NG Vehicle Test Program

Stoichiometric NG Heavy-Duty Engines: European Transit Buses

Total of 8 in operation in Helsinki with TWCs; DaimlerChrylser stoichiometric engine design

 Stoichiometric engines also offered by Iveco and MAN; operating in Brussels transit fleet along with DaimlerChrysler stoich. engines

Helsinki Experience

Stoichiometric CNG Buses

- Reliability, Performance, and Maintenance Have Been Good
- Equipped with TWC technology to reduce HC, CO, and NOx emissions
- Fuel Consumption on Energy Basis 15-20% Over Diesel

Advanced Natural Gas Engine Utilized Cooled EGR, Turbocharging, and 3-Way Catalytic Converter (ETH-Zurich)

NOx		CO		THC		BMEP	Engine Efficiency		
mg/m _N ³ (5%O ₂)	a/kWh	mg/m _N ³ (5%O ₂)	a/kWh	mg/m _N ³ (5%O ₂)	a/kWh	Bar	%	Operating Mode	
~1	~0.003	<u><</u> 75	<u><</u> 0.21	<u><</u> 30	<u><</u> 0.08	12/20	~40/42	EGR, λ=1 and 3-Way Catalyst	
<250	<0.79	<650	<2.05	~1000	~3.15	12	~36.5	EGR, λ>1 Without Catalyst	
250	0.76	100	0.30	1500	4.54	12	38	λ>1 With Oxidation Catalyst	

Source: SAE Technical Paper - 2000-01-2825

Outstanding Emissions Control and Engine Efficiency Through Engineering:

- 1) Reduced Cylinder Temperatures and Knock Limits Through Use of Cooled EGR
- 2) Achieved Engine Efficiency Through Maximum Use of Turbocharging
- 3) Emissions Control with Stoichiometric Calibration and the Proven 3-Way Catalytic Converter

Lean Burn Heavy-Duty NG Engines Are Dominant in the U.S.

- Lean-Burn Engines
 - Potential best fuel economy
 - Easiest NG engine modification (using diesel engine technology base)
 - HC, CO, and toxic HC emissions can be effectively reduced with catalyst-based technologies
 - PM emissions can be effectively reduced with catalyzed filter technologies
 - NOx emission reductions available with EGR systems and lean NOx catalytic strategies

School Bus Emissions Comparison: City-Suburban Heavy Vehicle Drive Cycle

School Bus Emissions Comparison: City-Suburban Heavy Vehicle Drive Cycle

ketones

derivatives x10

ARB Transit Bus Emissions Comparison: City Business District Drive Cycle

L.A. MTA Bus with Series 50G DDC Engine (56,600 miles for base case results)

MECA

Source: ARB presentation at August 2002 DEER Conf.

Oxidation Catalyst Significantly Reduces Toxic HC Emissions on CNG Transit Bus

City Business District Drive Cycle Results; Oxidation Catalyst with 4K miles

Source: ARB Presentation at August 2002 DEER Conf.

Oxidation Catalyst

Oxidation Catalysts Are Efficient and Have Excellent Operating Experience

- Oxidation Catalyst Control Capabilities
 - PM 20-50% Reduction
 - CO and HC up to 90% Reduction
 - Toxic HCs up to 70% Reduction
- Oxidation Catalyst Operating Experience
 - >250,000 Off-Road Engines
 - > 60,000 Urban Buses in the U.S., Europe, & Asia
 - Hong Kong initiating program with > 40,000 retrofits
 - >1,500,000 Class 1 & 2 Vehicles (Pick-Ups)
 - >35,000,000 LDD vehicles in Europe

Particulate Filters

Particulate Filters Nearly Eliminate PM

- PM Emissions Below 0.01 g/bhp-hr Can Be Achieved
- Significant Reductions in CO and HC Emissions Can Also Be Achieved
- Several Design Options Available:
 - Catalyzed Filter
 - Cont. Regenerative Design (DOC+Filter)
 - Filter + Fuel-Born Catalyst (PSA system)

Source: MECA 1999

Particulate Filters Are Efficient and Are Developing an Impressive Track Record

- Filter Control Capabilities
 - PM >85% Reduction with ULSF
 - Carbon-based Ultra-fine Particulate > 99% Reduction
 - CO and HC up to 90% Reduction
 - Toxic HCs up to 90% Reduction
- Filter Operating Experience
 - > 400,000 OE systems operating in Europe on passenger cars
 - U.S. & European OE certified systems for HDD
 - Over 50,000 Systems Have Been Retrofitted to Onroad HDD Vehicles Worldwide
 - Over 20,000 Non-Road Engines Equipped (Both OE Installed and Retrofit), Including Both Passive and Active Systems
 - Three Level 3 (> 85% PM reduction) Filter Systems Verified in CA for Retrofit including one for CNG/Diesel Bi-Fuel Applications

NOx Reduction Technologies

- Technology development includes:
 - NOx Adsorbers
 - High sulfur sensitivity; durability studies for heavyduty applications underway
 - Selective Catalytic Reduction
 - Infrastructure for on-board reductant (e.g., urea)

Progress in Developing NOx Adsorber Technology

- NOx Adsorber Technology Has Demonstrated the Capability of Control Up to 90% or More Under Certain Operating Conditions
- Light-duty operating experience in Europe and Japan with Partial Lean GDI Engines
- Focus of Current Development Efforts
 - Improvements to broaden the temperature range over which the NOx adsorber is effective (temperature window)
 - Improvements in thermal durability (resistance to thermal sintering)
 - Improvements in methods and performance for desulfation (sulfur cleansing)
 - Improvement in systems integration (NOx regeneration, packaging, fuel economy)
- Little experience with NG; Methane likely a poor choice for reductant

Catalyst Integration for NOx Adsorbers and Filters Is Being Developed

Toyota DPNR System

- •NOx trap material is coated directly on wall-flow filter (> 80% NOx + PM reductions)
- "Active oxygen" aids filter regeneration
- Achieved Tier 2, Bin 5 NOx and PM levels in U.S. EPA tests
- 60 vehicle test fleet underway in Europe

SCR Has Been Used Successfully on Stationary Sources and Is Now Used for Mobile Sources

- SCR Control Capabilities (w/ Integral Oxidation System)
 - PM 20-50% Reduction
 - CO and HC up to 90%
 - Toxic HCs up to 70%
 - NOx 50 to 90%
- SCR Operating Experience
 - Extensive Operating Experience with Gas Turbine Power Generation Applications
 - HD Truck Demonstration in Europe since 1995 with Mileage Exceeding 200,000 miles
 - Several U.S. Demonstrations Currently in Process for HDD On-Road

A C-12 engine achieved US 2010 PM/NOx levels with DPF/SCR in steady-state testing

Short Term Solutions

- Oxidation catalysts can be applied today to both new and existing NG engines to achieve substantial reductions in toxic HC emissions
 - –Many NG HDVs are operating in the U.S. without oxidation catalysts
- Demonstrations underway to show benefits of PM filter technology in reducing PM from NG engines (SCAQMD & NREL funding)

Long Term Solutions

- California and Federal 2007 On-Road HDE Standards will provide the regulatory incentive for engineering and commercializing the NG HDE of the future, including:
 - Stoichiometric NG Engine with Three-Way Catalyst Technology
 - Lean-Burn NG Engine with Oxidation Catalyst and NOx Exhaust Controls
 - -PM Filters for NG Engines

Conclusions

- NG engines can take advantage of proven emission control technology today
- 2007 HDE rule will change the NG engine system significantly; systems engineering required
- Regulations/Standards, Policies, Incentives, and Demonstration Programs all can play a role in ensuring that NG engines are as low emitting as possible

